高分辨核磁共振(Nuclear Magnetic Resonance,NMR)谱的获得通常需要高度稳定且均匀的强静磁场.阻抗磁体或阻抗-超导混合磁体可获得比超导磁体高得多的磁场,但它们的磁场的稳定性与均匀性比较差;另一方面,在活体定域波谱研究中,样品内部组分的磁化率差异,运动或生理活动等作用将不可避免地导致磁场的不均匀不稳定,并且这些不稳定不均匀性无法通过锁场匀场等传统的方法消除.基于分子间零量子相干的方法、空间编码单扫描快速方法、反卷积技术等日渐成为在不均匀不稳定磁场下获取高分辨率的NMR谱的研究热点.
Strong and extremely homogeneous static magnetic field is usually required for high-resolution nu-clear magnetic resonance (NMR). However, in the cases of in vivo and so on, the magnetic field inho-mogeneity owing to magnetic susceptibility variation in samples is unavoidable and hard to eliminate by conventional methods such as shimming. Recently, intermolecular multiple quantum coherences (iMQCs) have been employed to eliminate inhomogeneous broadening and obtain high-resolution NMR spectra, especially for in vivo samples. Compared to other high-resolution NMR methods, iMQC method exhibits its unique feature and advantage. It simultaneously holds information of chemical shifts, multiplet structures, coupling constants, and relative peak areas. All the information is often used to analyze and characterize molecular structures in conventional one-dimensional NMR spec-troscopy. In this work, recent technical developments including our results in this field are summarized; the high-resolution mechanism is analyzed and comparison with other methods based on interactions between spins is made; comments on the current situation and outlook on the research directions are also made.