Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages.
Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world.
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 ~tmol L-1) and auxin (10=8 mol L-1 NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evi- denced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root for- marion. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability ex- plained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root mor- phological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morpho- logical and physiological traits regulated by external stimuli such as P availability and auxin.
Phosphorus(P)is a non-renewable resource,therefore ensuring global food and environmental security depends upon sustainable P management.To achieve this goal,sustainable P management in the upstream and downstream sectors of agriculture from mineral extraction to food consumption must be addressed systematically.The innovation and feasibility of P sustainability are highlighted from the perspective of the whole P-based chain,including the mining and processing of P rock,production of P fertilizers,soil and rhizosphere processes involving P,absorption and utilization of P by plants,P in livestock production,as well as flow and management of P at the catchment scale.The paper also emphasizes the importance of recycling P and the current challenges of P recovery.Finally,sustainable solutions of holistic P management are proposed from the perspective of technology improvement with policy support.