The experimental results of the deformation and breakup of a single drop immersed in a Newtonian liq-uid and subjected to a constant shear rate which generated by counter rotating Couette apparatus were presented in this paper. From experimental observations, the breakup occurred by three mechanisms, namely, necking, end pinching, and capillary instability. Quantitative results for the deformation and breakup of drop are presented. The maximum diameter and Sauter mean diameter of daughter drops and capillary thread radius are linearly related to the inverse shear rate and independent of the initial drop size, the dimensionless wavelength which is the wave-length divided by the thread width at breakup is independent of the shear rate and initial drop size, and the deforma-tion of threads follows a pseudo-affine deformation for Cai/Cac larger than 2.
The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe with 40 mm ID respectively. No. 46 mechanical oil and tap water were used as working fluids. The superflcial velocity ranges of oil and water were: 0.04-1.2m·s-1 and 0.04-2.2m·s-1, respectively. The flow patterns were identified by visualization and by transient fluctuation signals of differential pressure drop. The flow patterns were defined according to the relative distribution of oil and water phases in the pipes. Flow pattern maps were obtained for both pipelines. In addition, semi-theoretical transition criteria for the flow patterns were proposed, and the proposed transitional criteria are in reasonable agreement with available data in liquid-liquid systems.