The waves induced by a moving dipole in a two-fluid system are analytically and experimentally investigated. The velocity potential of a dipole moving horizontally in the lower layer of a two-layer fluid with finite depth is derived by superposing Greens functions of sources (or sinks). The far-field waves are studied by using the method of stationary phase. The effects of two resulting modes, i.e. the surface- and internal-wave modes, on both the surface divergence field and the interfacial elevation are analyzed. A laboratory study on the internal waves generated by a moving sphere in a two-layer fluid is conducted in a towing tank under the same conditions as in the theoretical approach. The qualitative consistency between the present theory and the laboratory study is examined and confirmed.