The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor deposition (EB-PVD). In the KMC model, substrate was assumed to be a "surface" of tight-packed rows, and the simulation includes two phenomena: adatom-surface collision and adatom diffusion. While the interaction between atoms was described by the embedded atom method, the jumping energy was calculated by the molecular static (MS) calculation. The initial location of the adatom was defined by the Momentum Scheme. The results reveal that there exists a critical substrate temperature which means that the lowest packing density and the highest surface roughness structure will be achieved when the temperature is lower than the smaller critical value, while the roughness of both surfaces and the void contents keep decreasing with the substrate temperature increasing until it reaches the higher critical value. The results also indicate that the critical substrate temperature rises as the deposition rate increases.
Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate preheating temperature was taken into accounts and the finite element analysis package ANSYS was used to simulate the internal stress field and the potential displacement changing tendency. The results show that one of the most important quality factors on the judgment of micro-layer composites is the adhesion between the substrate and the deposition layers as well as among the different deposition layers. Besides the existance of temperature gradient through the thickness of layers, the main reason for the internal stress in micro-layer composites is the mismatch of various properties of the layer and the substrate of different thermal expansions and crystal lattice types. With the increase of substrate preheating temperature, the inter-laminar shear stress also takes on a tendency of increase but the axial residual stress decrease.
提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时间复杂度和空间复杂度。结果表明红黑树搜索优于其它两种搜索方法,模拟效率最高,更适合用于执行大系统的kinetic Monte Carlo模拟。