Novel Dy^3+-doped Gd(PO3)3 white light phosphors each with an orthorhombic system are successfully synthesized by solid-state reaction.The luminescence properties of white-light Gd1-x(PO3)3:xDy^3+(0 〈 x ≤ 0.25) under vacuum ultraviolet(VUV) excitation are investigated.The strong absorption at around 147 nm in excitation spectrum energy can be transferred to the energy levels of Dy^3+ ion from the host absorption.Additionally,the white light phosphor is activated by a single Dy^3+ ion.Therefore,the luminescence of Gd1-x(PO3)3:xDy(0 〈 x ≤ 0.25) under VUV excitation is effective,and it has the promise of being applied to mercury-free lamps.
Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different [Snmg-oi],[snmg-VO], [SnMg-VO ] and mgsn,correspond to the components at 85 °C, 146 213 °C of the thermoluminescence curve.