To determine the level of microsatellite sequence differences and to use the information to construct a phylogenetic relationship for cultivated tetraploid cotton (Gossypium spp.) species and their putative diploid ancestors, 10 genome-derived microsatellite primer pairs were used to amplify eight species, including two tetraploid and six diploid species, in Gossypium. A total of 92 unique amplicons were resolved using polyacrylamide gel electrophoresis. Each amplicon was cloned, sequenced, and analyzed using standard phylogenetic software. Allelic diversities were caused mostly by changes in the number of simple sequence repeat (SSR) motif repeats and only a small proportion resulted from interruption of the SSR motif within the locus for the same genome. The frequency of base substitutions was 0.5%-1.0% in different genomes, with only few indels found. Based on the combined 10 SSR flanking sequence data, the homology of A-genome diploid species averaged 98.9%, even though most of the amplicons were of the same size, and the sequence homology between G. gossypioides (Ulbr.) Standl. and three other D-genome species (G. raimondii Ulbr., G. davidsonii Kell., and G. thurberi Tod.) was 98.5%, 98.6%, and 98.5%, respectively. Phylogenetic trees of the two allotetraploid species and their putative diploid progenitors showed that homoelogous sequences from the A- and D-subgenome were still present in the polyploid subgenomes and they evolved independently. Meanwhile, homoelogous sequence interaction that duplicated loci in the polyploid subgenomes became phylogenetic sisters was also found in the evolutionary history of tetraploid cotton species. The results of the present study suggest that evaluation of SSR variation at the sequence level can be effective in exploring the evolutionary relationships among Gossypuim species.
In this paper, the Wick-type stochastic mKdV equation is researched. Many Wick-type stochastic solitonlike solutions are given via Hermite transformation and further generalized projective Riccati equation method.
Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide applications in process performance analysis, monitoring and fault diagnosis using existing rich historical database.In this paper, we propose a simple and straight forward multivariate statistical modeling based on a moving window MPCA (multiway principal component analysis) model along the time and batch axis for adaptive monitoring the progress of batch processes in real-time. It is an extension to minimum window MPCA and traditional MPCA.The moving window MPCA along the batch axis can copy seamlessly with variable run length and does not need to estimate any deviations of the ongoing batch from the average trajectories. It replaces an invariant fixed-model monitoring approach with adaptive updating model data structure within batch-to-batch, which overcomes the changing operation condition and slows time-varying behaviors of industrial processes. The software based on moving window MPCA has been successfully applied to the industrial polymerization reactor of polyvinyl chloride (PVC) process in the Jinxi Chemical Company of China since 1999.
Phase locking dynamics in coupled chaotic oscillators is investigated. For chaotic systems with a poorly coherent phase variable, the imperfect phase locking can be observed before the onset of a complete phase synchronization. The temporal alternations among phase lockings are found, which originate from an overlap of Arnold tongues.
The decay process σ→ππ at high temperature and density and its relation with chiral phase transition are discussed in the framework of the Nambu-Jona-Lasinio model.The decay rate for the process σ→ππ is calculated in the whole temperature and density region.The contribution of the final state pion statistics to the decay rate is discussed.The maximum decay rate at different chemical potentials is computed.Finally,we investigate the relation between the starting point of the decay process and the critical point of the first-order chiral phase transition.