Eolian flux in the Chinese Loess Plateau was reconstructed by measuring the dry bulk density and CaCO3 content of the late Cenozoic loess-paleosol-red clay sequences in the Lingtai profile. Comparison of eolian flux variation between the Lingtai profile and the ODP sites 885/886 in the North Pacific shows a significant wet-dry variability in addition to a gradual drying trend in the dust source regions in interior Asia. Especially, the increase of eolian fluxes from both continental and pelagic eolian sediments indicates a sharp drying of the dust source regions between 3.6 and 2.6 MaBP, which might be attributed to the tectonic uplift of the Tibetan Plateau, which cut down the moisture input to the interior Asia. The average value and variability of eolian flux are higher after 2.6 MaBP than before, which may be related to the Quaternary climatic fluctuations on the glacial-interglacial timescale after the commencement of major Northern Hemisphere Glaciations. The eolian fluxes of the Lingtai profile and Core V21-146 in northwest Pacific show a synchronous variation on the 103-105 a timescale, indicating that the flux variations from both continental and marine records are closely correlated to the Quaternary climatic fluctuation forced by the ice volume changes on a global scale.
A typical sequence of fluvial terraces and aeolian deposits overlying these ter- races were multidisciplinary investigated. New evidences for uplift process of the northeastern Qinghai-Tibetan Plateau in the past 14 million years were obtained. At least 11 river terraces along Huangshui, the first-class tributary of Yellow River, at the Xining-Huzhu region are identi- fied. While the first one (T1) is classified as an accumulation terrace, the others are all basement river terraces, which consist of the Tertiary sandstone and siltstone bedrock, fluvial gravel and pebbles and the overlying aeolian loess-Red Clay deposit. Samples from the aeolian deposits were examined for paleomagnetic stratigraphic reconstruction (1030 samples), luminescence dating (16 samples), magnetic susceptibility and grain-size distribution (more than 4000 sam- ples). The luminescence dating and stratigraphic correlation suggest that terraces of Tll, T10, T8, T7, T3, T2, T1 were formed at 14, 11.3, 1.55, 1.2, 0.15, 0.07 and 0.01 million years ago, re- spectively. Sedimentological analysis and geomorphological observation indicate that formation and evolution of these terraces were mainly driven by tectonic uplift. Therefore, the terrace se- quence provides an ideal geological record, of the uplift process of the northeastern during the past 14 million years, and the timings of the terraces formation are regarded as the timings of tectonic uplift. The significant uplifting events took place at 14, 11.3, 1.2 and 0.15 mil- lion years ago, respectively. The fluvial incision at the Xining-Huzhu region is less than 100 m during a period of ~12 million years in the Miocene era (between the Tll and T9), while the Huangshui River had incised 432 m during the past 1.2 million years (from T7 to the present floodplain). The river incision process clearly demonstrates that accelerated rising of the north- eastern Qinghai-Tibet Plateau during the late Cenozoic, and provides new evidence of previous thoughts. There was a significant readjustment of the fl
LU Huayu1, WANG Xiaoyong1, AN Zhisheng1, MIAO Xiaodong1, ZHU Rixiang3, MA Haizhou2, LI Zhen4, TAN Hongbing2 & WANG Xianyan1 1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075 China
运用R/S(Rescaled Range Analysis)方法,对1951—2000年过去50年西安市的气温、降水、相对湿度和日照百分率等气候因子的冬(12、1、2月)、夏(6、7、8月)和年平均值进行了分析计算,各因子的Hurst指数H均大于0.5,说明了4个因子存在明显的Hurst现象,反映出西安市过去50年来气候变化存在趋势性成分。过去50年气候资料统计表明,西安市气温呈现升高趋势,而降水、相对湿度和日照百分率则呈下降趋势,城市化效应已经对西安局地气候产生显著的影响。