教育部“春晖计划”(Z2005-1-62008)
- 作品数:14 被引量:59H指数:5
- 相关作者:朱昌锋李引珍李海军王庆荣郑丽英更多>>
- 相关机构:兰州交通大学兰州理工大学更多>>
- 发文基金:教育部“春晖计划”甘肃省自然科学基金更多>>
- 相关领域:交通运输工程自动化与计算机技术更多>>
- 基于混合比例方法抽样用于入侵检测被引量:1
- 2011年
- 支持向量机对于样本量不足的情况下会使得入侵检测分类精度普遍下降.为了提高入侵检测的检测精度,提出了一种利用混合比例抽取样本研究不平衡数据集的方法.该方法首先将数据集按各种类别分开,然后不按比例抽取,使得每层样本中的数据量相对平衡.再用此样本集构造分类器,采用构造的分类器去构建入侵检测系统进行检测.实验结果表明,使用这种混合比例的不平衡数据集分类方法可以有效地提高检测精度,而且降低误报率.
- 王庆荣郑丽英
- 关键词:不平衡数据集支持向量机入侵检测
- 基于DEA的城市轨道交通运营安全评价与分析被引量:19
- 2010年
- 利用信息熵分析和优化了城市轨道交通运营安全评价指标体系,建立了基于数据包络分析(DEA)的城市轨道交通运营安全评价的C2R模型.以广州地铁一号线为例,应用该模型对历年运营的安全性进行了评价与分析,并运用Matlab软件编程进行了求解.根据计算结果,在产出指标确定的情况下,对非DEA有效的决策单元的输入指标进行了有效的调整.
- 朱昌锋
- 关键词:城市轨道交通安全评价指标体系DEA信息熵
- 基于物元和信息熵的铁路冷藏集装箱办理站布局分析被引量:1
- 2009年
- 铁路冷藏集装箱办理站的布局要受到技术条件、设备条件、联运能力及所在区域社会经济发展状况等因素的影响。本文根据有关文献和历史数据,首次将物元与信息熵结合,对铁路冷藏集装箱办理站的布局进行了分析,建立了基于物元与信息熵的铁路冷藏集装箱办理站布局的多目标决策分析模型。通过建立经典域和节域,得到了关联函数;最后通过算例,验证了该模型的有效性、客观性和适用性,并归纳了模型的特点及适用范围,对分析铁路冷藏集装箱办理站的布局具有一定的借鉴意义。
- 朱昌锋李引珍
- 关键词:集装箱办理站物元信息熵
- 基于DEA的中间站资源配置效率评价被引量:2
- 2009年
- 中间站是铁路运输最基层的生产单位,其投入产出的效果关系到铁路运营的收入,因此对中间站工作效率有效性进行综合评价很有必要.结合中间站运输生产的特点,选取了一系列绩效评价指标,采用数据包络分析(DEA)模型,对某车务段所辖办理货运业务的12个中间站进行评价,并对各中间站的技术效率、规模效益、松弛变量进行分析,提出改进各中间站工作效率的途径.
- 李海军朱昌锋
- 关键词:DEA中间站
- 铁路集装箱运量组合预测方法研究被引量:4
- 2010年
- 根据铁路集装箱运量预测受到多因素影响以及非线性的特点,采用灰色关联分析法选取了影响集装箱运量的主要因素,提出了一种基于集对聚类预测和神经网络模型组合的铁路集装箱运量预测方法,该方法将集对聚类预测模型的预测值作为输入,相应的实际集装箱货运量作为输出,建立了神经网络模型结构,并提出了相应的算法,最后以实例分析了该模型的可行性和科学性.实例分析表明:集对聚类分析预测的最大误差为10.52%,而组合模型的预测误差最大为8.72%,说明文中提出的组合预测模型充分考虑了多指标的共同作用,灰色预测模型提供了较完善的输入数据,神经网络模型考虑了各主要指标的关联关系.
- 朱昌锋
- 关键词:铁路集装箱运量预测神经网络
- 基于随机灰色蚁群神经网络的集装箱结点站运量预测被引量:2
- 2011年
- 根据铁路集装箱运量预测受到多因素影响以及非线性的特点,利用随机灰色变量描述预测系统的不确定性,建立了随机灰色预测模型以及基于蚁群算法的递归神经网络模型,在此基础上,提出了一种基于随机灰色蚁群神经网络的集装箱结点站运量预测方法。最后,以兰州铁路局兰州北站为例,对模型的预测精度和有效性进行分析。研究结果表明:基于蚁群算法的递归神经网络模型的预测精度不但大于其他单一预测模型的预测精度,而且明显比其他传统组合预测模型的预测精度,能很好地反映事物发展的规律。
- 朱昌锋
- 关键词:神经网络蚁群优化算法
- 基于神经网络与Holt-Winters模型的铁路货运量组合预测被引量:4
- 2010年
- 铁路货运量的预测结果直接影响到铁路运输计划以及有关运输政策的制定.在有关文献研究的基础上,提出了基于Holt-Winters模型和神经网络的铁路货运量组合预测方法,并为Holt-Winters模型和神经网络模型设计了相应的算法,同时,采用最小绝对值法,确定了组合模型中各单项预测模型的权重.最后利用实例验证了该组合预测方法的有效性和实用性.预测结果分析表明:最大预测误差为9.13%,最小预测误差为2.38%,说明本文提出的组合预测模型充分考虑了多指标的共同作用,具有一定的科学性.
- 王庆荣
- 关键词:铁路货运量预测神经网络
- 放射形铁路专用线直达车流取送车问题的单亲遗传算法研究被引量:5
- 2011年
- 专用线最佳取送车顺序的确定,有利于减少作业车在站非生产性停留时间,加速车辆周转。通过分析放射形专用线直达车流取送车作业特点,构造了该问题的染色体编码方式,采用轮盘赌策略进行染色体选择,以作业车在站最小停留时间作为适应度函数,设计了该问题的单亲遗传算法,并结合算例进行计算,结果表明,该算法求解直达车流取送车问题取得了较好的效果。
- 李海军朱昌锋
- 关键词:取送车作业直达车流单亲遗传算法
- 提速条件下铁路货物运到期限计算方法被引量:8
- 2009年
- 分析了提速条件下现行运到期限计算方法存在的问题,研究了提速条件下铁路各货运产品的日均运行运价公里,并对统计结果进行了χ2检验。提出了提速条件下运到期限的计算方法,并根据统计分析结果和有关文献,确定了各参数的取值范围,该计算方法可根据货运产品类别和运输区段线路状况进行动态调整。分析结果表明:各类货运产品的日均运行运价公里服从正态分布;利用现行运到期限计算方法得到的运到期限与货物实际送达时间的最大差值为4.5d,而利用新的计算方法得到的最大差值仅为0.8d,说明该计算方法能比较客观地反映提速条件下各类货运产品的送达时间。
- 朱昌锋李引珍
- 关键词:铁路货物运输运到期限铁路提速统计分析
- 基于模型组合的铁路集装箱运量预测被引量:6
- 2010年
- 根据铁路集装箱运量预测受到多因素影响以及非线性的特点,本文采用灰色关联分析法选取了影响集装箱运量的主要因素,提出了一种基于非线性灰色模型和神经网络模型组合的铁路集装箱运量预测方法.该方法将非线性灰色预测模型的预测值作为输入,相应的实际集装箱货运量作为输出,建立了神经网络模型结构,并提出了相应的算法.最后以实例分析了该模型的可行性和科学性.实例分析表明:非线性灰色模型预测的最大误差为10.52%,而组合模型的预测误差最大为8.72%,说明文中提出的组合预测模型充分考虑了多指标的共同作用,灰色预测模型提供了较完善的输入数据,神经网络模型考虑了各主要指标的关联关系.
- 朱昌锋
- 关键词:铁路运输集装箱运输运量预测神经网络