Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized and unified.
Let G be a finite group, p the smallest prime dividing the order of G and P a Sylow p-subgroup of G. If d is the smallest generator number of P, then there exist maximal subgroups P1, P2,..., Pd of P, denoted by Md(P) = {P1,...,Pd}, such that di=1 Pi = Φ(P), the Frattini subgroup of P. In this paper, we will show that if each member of some fixed Md(P) is either p-cover-avoid or S-quasinormally embedded in G, then G is p-nilpotent. As applications, some further results are obtained.
Xuan Li HE1,2, Yan Ming WANG3 1. Department of Mathematics, Zhongshan University, Guangdong 510275, P. R. China