As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.
The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.