This paper presents an analytical model for predicting VOC waste gas degradation in a trickling biofilter. To facilitate the analysis, the packed bed is simplified into a series of straight capillary tubes covered by the biofilm. The gas-liquid flow field through the tube is divided into the liquid film flow on the biofilm and the gas core flow in the center. The biofilm consists of a reaction free zone close to solid wall and a reaction zone beneath the liquid film. The capillary tube model accounts for the effect of mass transport resistance in the liquid film and the biofilm, the gas-liquid interfacial mass transport resistance, the biochemical reaction, and the limitation of oxygen to biochemical reaction. The liquid film thickness in the capillary tube is obtained by simultaneously solving a set of hydrodynamic equations representing the momentum transport behaviors of the gas-liquid two-phase flow. The mass transport equations are established for gas core, liquid film, and biofilm combined with biochemical kinetics equations. An iterative computation process is employed to solve the discrete equations. The predicted purification efficiencies of VOC waste gas in trickling biofilter are found to be in good agreement with the experimental data. It has been revealed that for a fixed inlet concentration of toluene, the purification efficiency of trickling biofilter decreases with the increase in gas flow rate and liquid flow rate. The purification efficiency of VOC waste gas is dominated by mass transport resistance in liquid film and biofilm. The highest biodegradation rate occurs at the inlet of waste gas in trickling biofilter.
The Purification experiments of waste gas containing low concentration toluene were made in trickling biofilter with ceramic spheres.The effects of liquid flow rate, gas flow rate, pH of circulation liquid, and toluene concentration in inlet gas on the purification efficiency of trickling biofilter were investigated.The pressure drop of the trickling biofilter was also measured during experiments. Increasing liquid flow rate and gas flow rate resulted in the decrease of purification efficiency of trickling biofilter.The highest purification efficiency of trickling biofilter was found at the circulation liquid pH of 7.The porosity of the packing material at the inlet of gas was higher than that at the outlet of gas in biofilter after continuous operation in 50 days. The decrease in the porosity of packing material caused a great increase in the pressure drop of the biofilter.