Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.
Nb/Ta multilayer films deposited on Ti6A14V substrate with Nb and Ta monolayer thicknesses of 30 nm, 120 nm, and 240 nm were irradiated by a high current pulse electron beam (HCPEB) to prepare Nb-Ta alloyed layers. The mi- crostructure and the composition of the outmost surface of melted alloyed layers were investigated using a transmission electron microscope (TEM) equipped with an X-ray energy dispersive spectrometer (EDS) attachment. The Ta content of the alloyed surface layer prepared from the monolayer of thickness 30 nm, 120 nm, and 240 nm was- 27.7 at.%, 6.37 at.%, and 0 at.%, respectively. It was found that the Ta content in the alloyed layer plays a dominant role in the microstructure of the films. The hardness and the wear rate of the alloyed layers decrease with the increasing content of Ta in the surface laver.