Catalytic performance of phosphate-modified carbon nanotube(PoCNT) catalysts for oxidative dehydrogenation(ODH) of n-butane has been systematically investigated. The Po CNT catalysts are characterized by SEM, TEM, XPS and TG techniques. We set the products selectivity as a function of butane conversion over various phosphate loading, and it is found that the PoCNT catalyst with the 0.8% phosphate weight loading(0.8PoCNT) exhibits the best catalytic performance. When the phosphate loading is higher than 0.8 wt%, the difference of catalytic activity among the PoCNT catalysts is neglectable. Consequently, the ODH of n-butane over the 0.8PoCNT catalyst is particularly discussed via changing the reaction conditions including reaction temperatures, residence time and n-butane/O;ratios. The interacting mechanism of phosphate with the oxygen functional groups on the CNT surface is also proposed.
Yajie ZhangRui HuangZhenbao FengHongyang LiuChunfeng ShiJunfeng RongBaoning ZongDangsheng Su
Biomass has been widely accepted as a "zero-emission" energy carrier to take place fossil fuels, while its catalytic conversion is still limited by low efficiency of carbon atoms. Biomass conversion via 5- hydroxymethylfurfural (HMF) as a platform chemical is highly attractive because almost all carbon atoms could he retained in the downstream chemicals under mild reaction conditions. Here we summarize recent fundamental researches and industrial progresses on all involved processes including biomass degradation to hexoses, HMF formation, hydrogenation and oxidation of HMF.
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.