The dressed four-wave mixing (FWM) in a four-level S5Rb atomic system, experimentally demon- strated in this paper, is comprised by two coexisting processes. One is emission signal due to enhanced nonlinear via electromagnetically induced transparency (EIT). The other is the Bragg reflection of probe beam because of the created photonic band gap (PBG), which is affected by both linear and third-order nonlinear susceptibility. Moreover, we have demonstrated that different experimental parameters can significantly influence the measured signal with flexibly controlled PBG. These studies are found useful for understanding the fundamental mechanisms in generated FWM processing.
We report the multi-component optical azimuthons of four-wave mixing (FWM) composed of several modulated vortex beams, the so-called azimuthons, in V-type three-level and two-level atomic systems. We analyze the formation mechanisms of the FWM azimuthons theoretically and experimentally. In addition, we illustrate the interactions between the co-propagating azimuthon components. Finally, we also compare the stabilities of azimuthons in V-type three-level and two-level atomic systems.