In this work, we experimentally demonstrate an image information transfer between two channels by using slow light based on electromagnetically induced transparency(EIT) in a solid. The probe optical image is slowed due to steep dispersion induced by EIT. By applying an additional control field to an EIT-driven medium, the slowed image is transferred into two information channels. Image intensities between two information channels can be controlled by adjusting the intensities of the control fields. The similarity of output images is further analyzed. This image information transfer allows for manipulating images in a controlled fashion, and will be important in further information processing.
NnO2:xEu3+(x=O, 1%, 3%, 5%, molar fraction) fibers were synthesized by electrospinning technology. The size of the as-prepared fibers is relatively uniform and the average diameter is about 200 nm with a large draw ratio. The as-prepared Eu3+ doped SnO2 nanofibers have a rutile structure and consist of crystallitc grains with an average size of about 10 nm. A slight red shift of the A1gand Bag vibration modes and an additional peak at 288 nm were observed in the Raman spectra of the nanofibers. The energies of bandgaps of the SnO2 nanofiber with Eu doping of 1% and 3% are 2.64 eV, and the energy of bandgap is 2.94 eV with Eu doping of 5%(molar fraction). There is only orange emission(5D0→7F1 magnetic dipole transition) for Eu doped SnO2 nanofibers, and no red emission could be observed. The orange emission upon indirect excitation splits into three peaks and the peak intensity at the excitation wavelength of 275 nm is higher than that at the excitation wavelength of 488 nm.