Detection of Cu(Ⅱ) is very important in disease diagnose, biological system detection and environmental monitoring. Previously, we found that the product TPE-CS prepared by attaching the chromophores of tetraphenylethylene(TPE) to the chitosan(CS) chains showed excellent fluorescent properties. In this study, we tried to use TPE-CS for detecting Cu(Ⅱ) because of the stable complexation of CS with heavy metals and the luminosity mechanism of the Restriction of Intramolecular Rotations(RIR) for aggregation-induced emission(AIE)-active materials. The fluorescence intensity changed when TPE-CS was contacted with different metal ions, to be specific, no change for Na;, slightly increase for Hg;, Pb;, Zn;, Cd;, Fe;, Fe;due to the RIR caused by the complexation between CS and metal ions. However, for Cu;, an obvious fluorescence decrease was observed because of the Photoinduced-Electron-Transfer(PET). Moreover, we found that the quenched FL intensity of TPE-CS was proportional to the concentration of Cu(Ⅱ) in the range of 5 μmol/L to 100 μmol/L, which provided a new way to quantitatively detect Cu(Ⅱ) . Besides, TPE-CS has excellent water-solubility as well as absorbability(the percentage of removal, R = 84%), which is an excellent detection probe and remover for Cu(Ⅱ) .
In order to prepare a novel hemostatic dressing for uncontrolled hemorrhage, a porous chitosan sponge was coated with self-assembled(thrombin/tannic acid)n films, which were based on hydrogen bonding interactions between thrombin and tannic acid at physiologic p H. According to the whole blood clotting test, the coated chitosan sponges showed a significantly high rate of blood clotting due to the addition of thrombin. On the other hand, the storable half-life of immobilized thrombin is extended to 66.9 days at room temperature, which is 8.5 times longer than unfixed thrombin. It is because of the immobilization effect of, not only the porous structure of chitosan sponge but also the interactions between thrombin and tannic acid. In addition, the tannic acid has similar antibacterial effect to chitosan. Therefore, it is an excellent combination of chitosan, thrombin and tannic acid. Besides, all of materials in this research have been approved by the United States Food and Drug Administration(FDA). So the chitosan-based sponge is a promising candidate dressing for uncontrolled hemorrhage due to its storable, bio-safe and highly effective hemostatic properties.