At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational interpolation function with lower degree and better approximation effect, the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1 (0 〈 dl ≤ m) and d2 (0 ≤ d2≤ n), builds bivariate polynomial vector interpolation for each piece, then combines with them properly. As compared with previous methods, the new method given by this paper is easy to compute and the degree for the interpolants is lower.
Newton interpolation and Thiele-type continued fractions interpolation may be the favoured linear interpolation and nonlinear interpolation,but these two interpolations could not solve all the interpolant problems.In this paper,several general frames are established by introducing multiple parameters and they are extensions and improvements of those for the general frames studied by Tan and Fang.Numerical examples are given to show the effectiveness of the results in this paper.
In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a system of equations based on the given data,we can directly test whether the relevant interpolant exists or not.By coming up with our method, the problem of how to deal with scalar equations and vector equations in the same system of equations is solved.After testing existence,an expression of the corresponding bivariate vector-valued rational interpolant can be constructed consequently.In addition,the way to get the expression is different from the one by making use of Thiele-type bivariate branched vector-valued continued fractions and Samelson inverse which are commonly used to construct the bivariate vector-valued rational interpolants.Compared with the Thiele-type method,the one given in this paper is more direct.Finally,some numerical examples are given to illustrate the result.