A new di-function adsorbent (JN-3) was prepared by sulfhydryl modified. Comparing with Amberlite XAD-4 and NDA-150, the equilibrium adsorption for phenol on the JN-3 from aqueous solutions was tested, perfect adsorption capacity was shown. Pb2+ can be also removed by JN-3 because of the chelate interaction between sulfhydryl groups and metal ions. This adsorbent could be used in removal of combine pollutants such as phenolic compounds and heavy metal ions from waste streams.
Refractory dissolved organic matter (DOM) from landfill leachate treatment plant was with high dissolved organic carbon (DOC) content. An aminated polymeric adsorbent NDA-8 with tertiary amino groups and sufficient mesopore was synthesized, which exhibited high adsorption capacity to the DOM (raw water after coagulation). Resin NDA-8 performed better in the uptake of the DOM than resin DAX-8 and A100. Electrostatic attraction was considered as the decisive interaction between the adsorbent and adsorbate. Special attention was paid to the correlation between porous structure and adsorption capacity. The mesopore of NDA-8 played a crucial role during uptake of the DOM. In general, resin in chloride form performed a higher removal rate of DOC. According to the colunm adsorption test, total adsorption capacity of NDA-8 was calculated to 52.28 mg DOC/mL wet resin. 0.2 mol/L sodium hydroxide solution could regenerate the adsorbent efficiently.
ZHANG Long, LI Aimin, WANG Jinnan, LU Yufei, ZHOU Youdong State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
The systematical study about side reactions have revealed the formation mechanism of oxygen-containing groups of hypercrosslinked polymers. Surface chemistry and functionality of the polymers are characterized by Fourier-transform infrared spectroscopy (FT-IR), solid state nuclear magnetic resonance (NMR) and contact angle. The results showed that the ether groups were from chloromethylated reaction, and the alcohol groups arose from partial hydrolysis of chloromethyl groups during the post-crosslinking reaction, and the carbonyl functionality was formed by further oxidation of the alcohol groups. Catalyst and solvent used in the postcrosslinking reaction would greatly influence the surface chemistry of the polymer.