Tens of thousands of landslides were triggered by May 12, 2008 earthquake over a broad area. The main purpose of this article is to apply and verify earthquake-triggered landslide hazard analysis techniques by using weight of evidence modeling in Qingshui (清水) River watershed, Deyang (德阳) City, Sichuan (四川) Province, China. Two thousand three hundred and twenty-one landslides were interpreted in the study area from aerial photographs and multi-source remote sensing imageries post-earthquake, verified by field surveys. The landslide inventory in the study area was established. A spatial database, including landslides and associated controlling parameters that may have influence on the occurrence of landslides, was constructed from topographic maps, geological maps, and enhanced thematic mapper (ETM+) remote sensing imageries. The factors that influence landslide occurrence,such as slope angle, aspect, curvature, elevation, flow accumulation, distance from drainages, and distance from roads were calculated from the topographic maps. Lithology, distance from seismogenic fault, distance from all faults, and distance from stratigraphic boundaries were derived from the geological maps. Normalized difference vegetation index (NDV1) was extracted from ETM+ images. Seismic intensity zoning was collected from Wenchuan (汶川) Ms8.0 Earthquake Intensity Distribution Map published by the China Earthquake Administration.Landslide hazard indices were calculated using the weight of evidence model, and landslide hazard maps were calculated from using different controlling parameters cases. The hazard map was compared with known landslide locations and verified. The success accuracy percentage of using all 13 controlling parameters was 71.82%. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low, and very low. The validation results showed satisfactory agreement between the hazard map and the existing landslides distribution data.
On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036 landslides were determined from visual interpretation of aerial photographs and high resolution remote sensing images, and verified by selected field investigations. These landslides covered a total area of about 1. 194km~. Characteristics and failure mechanisms of these landslides are listed in this paper, including the fact that the spatial distribution of these landslides is controlled by co- seismic main surface fault ruptures. Most of the landslides were small scale, causing rather less hazards, and often occurring close to each other. The landslides were of various types, including mainly disrupted landslides and rock falls in shallows and also deep-seated landslides, liquefaction induced landslides, and compound landslides. In addition to strong ground shaking, which is the direct landslide triggering factor, geological, topographical, and human activity also have impact on the occurrence of earthquake triggered landslides. In this paper, five types of failure mechanisms related to the landslides are presented, namely, the excavated toes of slopes accompanied by strong ground shaking; surface water infiltration accompanied by strong ground shaking; co- seismic fault slipping accompanied by strong ground shaking; only strong ground shaking; and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by co-seismic ground shaking. Besides the main co-seismic surface ruptures, slope fissures were also delineated from visual interpretation of aerial photographs in high resolution. A total of 4814 slope fissures, with a total length up to 77. lkm, were finally mapped. These slope fissures are mainly distributed on the slopes located at the southeastern end of the main co-seismic surface rupture zone, an area subject to strong compression dur