Partial transmit sequence (PTS) is a promising technique for peak-to-average power ratio (PAPR) re-duction in orthogonal frequency division multiplexing (OFDM). While in optimal PTS, an exhaustive search for all combinations of phase factor sequences is required, this results in huge computation. In this paper, by introducing the orthogonal design, a phase factor sequences algorithm is proposed. The algorithm uses orthogonal table to gen-erate phase factor sequences, and the regular PAPR computation result is then followed by the parameter estima-tion. The simulation result shows that the proposed algorithm reduces the computation notably and obtains a good PAPR performance approaching the optimal PTS.
One of the major issues with multi-carrier systems is their vulnerability to timing synchronization errors resulting in the loss of time synchronization which causes loss of orientation of incoming data at the receiver. This paper presents an acquisition algorithm to timing recovery using the decision-aided extended Kalman filtering (EKF) technique for nonlinear disturbance channels in a wavelet packet transform-based multicarrier modulation communication system. This timing recovery algorithm gives faster convergence, smaller root mean square (RMS) errors, and better bit error rate (BER) performance than traditional timing recovery methods, such as the phase-locked loop (PLL), maximum likelihood (ML), and Kalman filter (KF) methods. Thus, the algorithm is able to handle larger timing errors more reliably and to provide better timing recovery, since the scheme takes into account the nonlinear relationship between the signal samples and timing errors. Simulations for various time-varying channels show that the timing recovery algorithm works well for wavelet packet transform-based multicarrier modulation communication systems.