The authors evaluated 57 parental inbred lines of maize hybrids disseminated in Southwest China for drought tolerance under drought-stressed and well-watered conditions. Multiple regression analyses between drought tolerant coefficients of the grain yield per plant and 15 morphological and physiological traits measured from a subset of 12 selected lines, identified traits 1 and 5, which were important for drought tolerance, at the seedling and reproductive stages respectively. Gene effects, combining abilities, and heritabilities of these traits were estimated using generation mean and diallel cross methods. Dominance effect was more important than additive effect for the plant height, anthesis-silking interval (ASI), root weight, and the grain yield per plant, whereas, they were about equal for the leaf emergence rate. The variances of special combining ability (SCA) were about double that of the general combining ability (GCA) for plant height, ASI and grain yield per plant, although they were about equal for leaf emergence rate and root weight. Narrow sense heritabilities of the five traits for the reproductive stage were not high (12.8-29.6%), although broad sense heritabilities for plant height, ASI, and grain yield were as high as 70-85%. A segregating population consisting of 183 F2 plants from the cross N87-1 (drought tolerant) × 9526 (susceptible), was genotyped at 103 SSR loci and the F2:4 families were evaluated under two water regimes. Twelve quantitative trait loci (QTLs) (two for plant height, five for ASI, four for root biomass, and one for grain yield) were identified, most of which had overdominant gene action. Some chromosomal regions, such as those linked to markers umcl051 (bin 4.08), umc2881 (bin 4.03), and phi034 (bin 7.02), had overlapping QTLs.
FU Feng-ling FENG Zhi-lei GAO Shi-bing ZHOU Shu-feng LI Wan-chen
To provide the useful information for the choice of molecular marker used in marker-assisted selection of drought tolerance, it is necessary to find out more candidate genes and fulfill the information gaps in gene expression regulation under drought stress. In this study, we isolated four differentially expressed cDNA fragments from leaves of a droughttolerant inbred line by suppression subtractive hybridization and reverse Northern hybridization, and validated their differential expression patterns among six inbred lines with different drought tolerance in response to drought stress by quantitative real-time PCR. Sequence similarity analysis indicated that two of four differentially expressed cDNA showed homology to gene DegP encoding trypsin-like serine protease, and gene PGAM-i encoding cofactor-independent phosphoglyceromutase, respectively. Expressions of the genes corresponding to four cDNA fragments was decreased at 6 h after drought stress treatment in most of the six inbred lines, and then returned to the control level with further stress in three of the tolerant inbred lines. The expression of the gene PGAM-i and the genes corresponding to fragments E4 and F4 were increased to a high level in tolerant inbred line 81565. In the two drought-sensitive inbred lines (Dan340 and ES40), the expression of these genes was still down-regulated. The probable mechanisms of these genes in response to drought stress were discussed. These results indicated that the drought-tolerant inbred lines upregulated the expression of the drought-tolerant candidate genes, in contrast, drought-sensitive inbred lines downregulated the expression of the genes.