Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN.
The quasi-static compressive mechanical behavior and deformation mechanism of closed-cell magnesium foams were studied, and the ef- fects of the density of magnesium foams on the compressive and energy absorption properties were also discussed. The results show that the compressive process of closed-cell magnesium foams is characterized by three deformation stages: linear elastic stage, collapsing stage and densification stage. At the linear elastic stage, the peak compressive strength (t70) and Young's modulus (E0) increase as the density increases Magnesium foams can absorb energy at the collapsing stage. In a certain strain range, the energy absorption capacity also increases as the density of magnesium foams increases.
JI Haibin,YAO Guangchun,LUO Hongjie,ZU Guoyin,and LIU Letian School of Material and Metallurgy,Northeastern University,Shenyang 110004,China