An analytical method was proposed dielectric properties for particulate composites. to calculate effective linear and nonlinear The method is based on an approximate solution of two-particle interaction problem, and it can be applied to relatively high volume concentration of particles (up to 50%). Nonlinear dielectric property was also examined by means of secant method. It is found that for low applied electric filed the proposed method is close to Stroud and Hui's method and for high applied electric filed it is close to Yu's method.
Polymeric materials usually present some viscoelastic behavior. To improve the mechanical behavior of these materials, ceramics materials are often filled into the polymeric materials in form of fiber or particle. A micromechanical model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites, especially for high volume concentration of filled particles. The method is based on Laplace transform technique and an elastic model including two-particle interaction. The effective creep compliance and the stress and strain relation at a constant loading rate are analyzed. The results show that the proposed method predicts a significant stiffer response than those based on Mori-Tanaka's method at high volume concentration of particles.