In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.
Chromatin immunoprecipitation followed by sequencing(ChIP-seq)is increasingly being used for genome-wide profiling of transcriptional regulation,as this technique enables dissection of the gene regulatory networks.With input as control,a variety of statistical methods have been proposed for identifying the enriched regions in the genome,i.e.,the transcriptional factor binding sites and chromatin modifications.However,when there are no controls,whether peak calling is still reliable awaits systematic evaluations.To address this question,we used a Bayesian framework approach to show the effectiveness of peak calling without controls(PCWC).Using several different types of ChIP-seq data,we demonstrated the relatively high accuracy of PCWC with less than a 5%false discovery rate(FDR).Compared with previously published methods,e.g.,the model-based analysis of ChIP-seq(MACS),PCWC is reliable with lower FDR.Furthermore,to interpret the biological significance of the called peaks,in combination with microarray gene expression data,gene ontology annotation and subsequent motif discovery,our results indicate PCWC possesses a high efficiency.Additionally,using in silico data,only a small number of peaks were identified,suggesting the significantly low FDR for PCWC.