The emphasis of component system regression testing is retesting of the event interaction between updated components and other components in a system.A component system regression testing method based on a new component testing association model (CTAM) is proposed.First,the modification-affected component groups are identified by the impact analysis on CTAM,and each component in this group is assigned with an influence degree.Then,previous test cases are selected according to the influence degree,to generate the minimal regression test suite.Compared with traditional methods,CTAM is derived from the statistic on the interactive events that occurred in previous test executions,and focuses on the complicated relationship between components,which is more applicable to the component system regression testing.
The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.
To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.
In order to enable clustering to be done under a lower dimension, a new feature selection method for clustering is proposed. This method has three steps which are all carried out in a wrapper framework. First, all the original features are ranked according to their importance. An evaluation function E(f) used to evaluate the importance of a feature is introduced. Secondly, the set of important features is selected sequentially. Finally, the possible redundant features are removed from the important feature subset. Because the features are selected sequentially, it is not necessary to search through the large feature subset space, thus the efficiency can be improved. Experimental results show that the set of important features for clustering can be found and those unimportant features or features that may hinder the clustering task will be discarded by this method.