Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S4 solution. Relative to Pt counter electrode, the Cu2S counter electrode provides greater electrocatalytic activity and lower charge transfer resistance. The pre- pared CuzS counter electrode represented nanoflower-like porous film which was composed of Cu2S nanosheets on FTO and had a higher surface area and lower sheet resistance than that of sulfided brass Cu2S counter electrode. An energy conversion efficiency of 3.62% was achieved using the metal chalcogenide complex-mediated fabricated Cu2S counter electrode for CdS/CdSe co-sensitized solar cells under 1 sun, AM 1.5 illumination.
A room temperature ionic liquid crystal, 1-dodecyl-3-ethylimidazolium iodide (C12EImI), and an ionic liquid, 1-decyl-3- ethylimidazolium iodide (Cl0EImI), have been synthesized, characterized and employed as the electrolyte for dye-sensitized solar cells (DSSC). The physicochemical properties show that a smectic A (SmA) phase with a lamellar structure is formed in CIzEImI. Both C^2EImI and Cl0EImI have good electrochemical and thermal stability facilitating their use in DSSC. The steady-state voltammograms reveal that the diffusion coefficient of I3- in C^2EImI is larger than that in CmEImI, which is at- tributed to the existence of the SmA phase in Ca2EImI. Because the iodide species are located between the layers of imidazo- lium cations in CjzEImI, exchange reaction-based diffusion is increased with a consequent increase in, the overall diffusion. The electrochemical impedance spectrum reveals that charge recombination at the dyed TiOJelectrolyte interface of a C12EImI-based DSSC is reduced due to the increase in I3- diffusion, resulting in higher open-circuit voltage. Moreover, both short-circuit current density and fill factor of the Cl2EImI based DSSC increase, as a result of the increasing transport of I3 in C^2EImI. Consequently, the photoelectric conversion efficiency of C^2EImI-based DSSC is higher than that of the Cl0EImI-based DSSC.
PAN XuWANG MengFANG XiaQingZHANG ChangNengHUO ZhiPengDAI SongYuan