Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
To design a surface with large slip or larger drag reduction is a pop issue in the fields of liquid transporting and body swimming. In this context, it is a crucial problem to measure the slip length for these surfaces. Here we propose a novel method by using rheometer for this objective. This method is implemented by designing the distribution of the super-hydrophobic area on the sample. Using this method, a slip length of 40 μm for 70 wt% glycerin flow over a super-hydrophobic surface with stripe structure (the period, width and height of ridges are 150 μm, 40 μm and 65 μm, respectively) is measured. The result shows that the slip length measured using this method is in good agreement with former results measured by other methods. This method is fit for measuring the slip length of super-hydrophobic surface whose structure ranges from microto nanoscale.
Twelve samples with periodic array square pillars microstructure were prepared on the silicon wafer by plasma etching techniques, on which space b of the square pillars increased from 5 to 60 μm. In order to study the effect ofb on the wettability of the rough surface, the effects of apparent contact angle (CA) and sliding angle (a) of the droplet on the rough surface were measured with the contact angle meter. The results show that the experimental values of CA well agree with the classical wetting theory and a decreases with the increase of b. Two drop shapes exist on the samples' surface, corresponding to the Cassie state and the Wenzel state respectively. The contact state in which a drop would settle depends typically on the size of b. On the role of gravitation, the irreversible transition of a drop from Cassie state to Wenzel state should occur at a certain space of the square pillars. Since the transition has implications on the application of super-hydrophobic rough surfaces, theoretically, the prediction of wetting state transition on square pillar array micro-structured surfaces provides an intuitionistic guidance for the design of steady superhydrophobic surfaces.
Nickel nanometer catalyst thin films were prepared on SiO2/Si substrates using sputtering coater. The effects of ammonia pretreatment on the catalyst films from continuous film to the nanoparticles were investigated. The nanostructures of the Ni thin films as a function of the catalyst film original thickness, the pretreatment time and temperature were discussed. The optimum parameters of etching process were obtained, and the functional mechanism of ammonia was primarily analyzed. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the obtained nanoparticles. It is demonstrated that the controlled size and density distribution of the nanoparticles can be achieved by employing ammonia etching method.