The characteristics of the longitudinal dispersion of pollutants in compound channels remain unclear. This study examines the relationships among the vegetation density, the width of the floodplain, the water depth ratio, the cross-sectional mean velocity, and the longitudinal dispersion coefficient of a symmetrical compound channel with a rigid non-submerged vegetated floodplain. The longitudinal dispersion coefficient is found to increase significantly with the presence of vegetation on floodplains, and is positively correlated with the plant density. When the density of the vegetation on the floodplains exceeds a certain value, the dispersion coefficient no longer changes with the vegetation density. The longitudinal dispersion coefficient is found to increase with the increase of the width of the floodplain. Moreover, the combined effects of the mean velocity and the water depth ratio have a positive correlation with the dispersion coefficient. The effects of the vegetation on the longitudinal dispersion coefficient in the channels with various cross-sections are also compared. The compound channels with a vegetated floodplain are found to differ significantly from the channels with a rectangular cross-section.
Li GuXin-xin ZhaoLing-hang XingZi-nan JiaoZu-lin HuaXiao-dong Liu