[Objective] This study was aimed to explore the effects of Bacil us amy-loliquefaciens biofertilizer on tea yield and quality. [Method] The field plot experiment was conducted with the biofertilizer treatments and control to investigate 100-bud weight and main biochemical components. [Result] The treatments by Bacil us amy-loliquefaciens biofertilizer, which was fermented using sweet potato starch wastewa-ter (SPSW) as culture medium, improved 100-bud weight and tea quality significant-ly under the concentration of 0.8×108, 1.6×108 and 3.2×108 cfu/ml with the dose of 1 L/m2 for 4 times. At the optimum concentration of 1.6 ×108 cfu/ml, the biofertilizer treatment increased the 100-bud weight by 22.3%, water extracting materials by 21.9%, amino acids content by 8.83%, tea polyphenol content by 9.76%, and de-creased theine content by 8.32%, respectively. Compared with the control, there was no significant difference between the SPSW treatment and the control. [Con-clusion] The production of the B. amyloliquefaciens biofertilizer could consume SP-SW, and the application of the biofertilizer could improved the tea yield and quality, which provided references for the development of ecological agriculture.
In this study, Bacil us amyloliquefaciens A3 was continual y incubated in shake fIasks contalning wastewater from sweet potato starch production as an ef-fective biofertiIizer for cuItivation of Brassica juncea var. multiceps(XueIihong). Based on pot experiments in the greenhouse, the effects of chemical fertiIizers (CN), biofertiIizer (BF), inactivated broth (BI), starch wastewater (SW) and the combination of biofertiIizer and chemical fertiIizer (BC) on the yield, NO3- content and NO2- con-tent of XueIihong, soiI physicochemical properties and N2O emission were investi-gated. The resuIts showed that the yield of XueIihong in BC and CN treatments was improved by five times compared with CK; BF and SW treatments had insignifi-cant impact on the yield of XueIihong. Compared with CN treatment, BCL treatment exhibited simiIar improving effects on the yield of XueIihong, in which NO3- content of XueIihong and soiI was reduced by 16.4%-73.6% and 22%-29%, which reduced the risk of nitrogen eIuviations in soiI; average N2O fIux (FPV30) in BCL treatment was reduced by 58.3%-73.1% compared with CN treatment. In concIusion, B. amy-loliquefaciens is a feasibIe Iow-cost biofertiIizer for sustalnabIe vegetabIe farming with a great potential for starch wastewater utiIization.