中央高校基本科研业务费专项资金(2010GK182)
- 作品数:2 被引量:5H指数:2
- 相关作者:赵国兴骆祖莹杨旭唐亮更多>>
- 相关机构:北京师范大学更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 利于GPU计算具有线性并行度的P/G网SOR求解算法被引量:3
- 2013年
- 近年来电子设计自动化(EDA)研究人员尝试利用图形处理器(graphic processing unit,GPU)提供的高性能计算能力对IC参数分析进行加速研究.为了利用GPU进行电源线/地线网络(power/ground network,P/G网)快速分析,设计了一种基于经典的连续过松弛(successive over-relaxation,SOR)算法的高效P/G网分析并行算法.基于GPU并行计算加速原理,此算法进行了如下改进:1)采用红-黑次序的松弛策略.将所有的节点分为红黑两类,红色节点的所有邻点只有黑色节点、黑色节点的所有邻点只有红色节点,红色节点与黑色节点交替松弛,保证了GPU并行计算中的数据一致性.对于具有N个节点的P/G网而言,一次红色节点或黑色节点松弛可以同时对N/2个节点进行松弛操作,即理论上可以同时启动N?2个并行线程.2)优化数据结构.实现了对数据空间的合并访问,以保证对GPU全局存储空间的最优访问.3)在共享存储器内通过并行归约对松弛标记进行快速统计,同时利用zero-copy技术进行松弛标记的快速拷贝,以快速决定是否继续松弛.大量的实验结果表明:与单线程的CPU程序相比,此算法的加速倍数随GPU所提供物理线程的数目增加而线性增加,可以获得最大242倍的加速效果,是目前EDA研究领域中加速效果最好的GPU算法.
- 唐亮骆祖莹赵国兴杨旭
- 关键词:统一计算设备架构
- 基于任务精确预测的实时功耗温度管理被引量:2
- 2014年
- 实时功耗温度管理(DPTM)通过对任务的准确预测与合理调度,可以有效降低片上系统的运行能耗与峰值温度.为了获得更好的DPTM调度效果,文中提出了一种精确的组合式任务预测算法和一种任务调度算法VP-TALK,进而构建了一个完整的DPTM原型系统.为了对复杂任务进行精确的任务预测,文中DPTM系统先将复杂任务按频谱长短分类为随机/周期/趋势3种成分,然后采用灰色模型/傅里叶模型/径向基函数(RBF)神经网络模型分别对这3种成分进行组合分析,以获得精确的预测效果;基于精确预测的任务负载量,文中所提出的VP-TALK算法可以计算出最优电压-频率对的理想值,进而选择出两组与理想值相邻的电压-频率对,以获得两个现实的工作状态,并考虑核心温度和任务实时性的条件,VP-TALK算法将任务负载分配到这两个工作状态,以获得最优的DPTM效果;最后基于机器学习方法,综合4种源算法构建了一套完整的DPTM原型系统.实验结果表明:(1)文中系统的任务预测组合方法的平均误差仅为2.89%;(2)在相同的设定峰值温度约束下,与已有调度算法的能耗值相比,尽管假设了更为敏感的功率-温度影响关系,但对于较高的工作负载率,文中所提出的VP-TALK调度算法仍能够获得平均14.33%的能耗降低;(3)文中所提出的DPTM原型系统可以获得接近于理想状态的能耗优化效果.
- 赵国兴闫佳琪骆祖莹
- 关键词:任务调度