Crystallization properties play an important role in keeping a smooth running of continuous casting process and high surface quality of cast strands. To reduce fluorine pollution in slag, a new type of CaO-SiO2-Na2O (CSN) based mold flux was studied. The solidification and crystallization properties, including crystallization temperature, crystallization ratio and solidification mineragraphy, were measured, which were compared with the CaO-SiO2-CaF2 (GF) mold flux. The results show that the crystallization performance is equal to the high fluoride mold powder and CSN can be used for peritectic steel grades sensitive to longitudinal cracking in continuous casting.
Excessive sintering of mould fluxes can readily cause defects and sticker breakouts in continuously cast strands.Studying the sintering property is important to minimize problems related to sintering arising from the use of mould fluxes in continuous casting.An effective method of measuring the apparent sintering temperature has been developed in this study.The method is based on monitoring the formation of cavities caused by melting of samples.For monitoring,the differential pressure of an inert gas flow was measured through a set volume of sample(mould flux A)held in a furnace tube.The apparent sintering temperature was defined in this test to determine sintering process.The sintering properties of fluxes with various contents of carbon black were examined along with identification of mineralogical phases and the nature of the sinter for samples of mould flux A held for one hour at different temperatures.The experimental results indicated that the apparent sintering temperature(AST)was a useful parameter to assess the threat of problems related to sinter.
WANG QianLU Yong-jianHE Sheng-pingWANG Li-juanK C Mills