While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive least square (FURLS) algorithm. Algorithm development process is presented in this paper. Real time active vibration control experimental tests were done. The experiment resuits show that the active control algorithm proposed in this paper has good control performance for both narrow band disturbances and broad band disturbances.
We investigate the optimization of linear impulse systems with the reinforcement learning based adaptive dynamic programming(ADP)method.For linear impulse systems,the optimal objective function is shown to be a quadric form of the pre-impulse states.The ADP method provides solutions that iteratively converge to the optimal objective function.If an initial guess of the pre-impulse objective function is selected as a quadratic form of the pre-impulse states,the objective function iteratively converges to the optimal one through ADP.Though direct use of the quadratic objective function of the states within the ADP method is theoretically possible,the numerical singularity problem may occur due to the matrix inversion therein when the system dimensionality increases.A neural network based ADP method can circumvent this problem.A neural network with polynomial activation functions is selected to approximate the pre-impulse objective function and trained iteratively using the ADP method to achieve optimal control.After a successful training,optimal impulse control can be derived.Simulations are presented for illustrative purposes.
A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.