As efficient water treatment agents, a novel series of rectorite-based ZnO and TiO2 hybrid composites(REC/ZnO/TiO2) were synthesized and characterized in this study. Effects of experimental parameters including TiO2 mass ratio, solution p H and catalyst dosage on the removal of methyl blue(MB) were also conducted. The presence of a little mass ratio(2%-6%) of TiO2 highly promoted the photoactivity of REC/ZnO/TiO2 in removal of MB dye from aqueous solution, in which ZnO and REC played a role of photocatalyst and adsorbent. The promotion effects of TiO2 may result from the accelerated separation of electron-hole on ZnO. The observed kinetic constant for the degradation of MB over REC/ZnO and REC/ZnO/TiO2 were 0.015 and 0.038 min^(-1), respectively. The degradation kinetics of MB dye, which followed the Langmuir–Hinshelwood model, had a reaction constant of 0.17 mg/(L min). The decrease of removal ratio of MB after five repetitive experiments was small, indicating REC/ZnO/TiO2 has great potential as an effective and stable catalyst.