This paper studies the properties of a kind of portable ultra-bright microfocus x-ray source with the Monte-Carlo method in detail. The new x-ray source consists of an electron-emission system, an electrostatic focusing system and a metal target. A crystal Lanthanum Hexaboride cathode, a Wehnelt grid and an extracted electrode compose the triode electrode electron-gun system. Two equal radius cylinder electrodes form the focusing system. The key factors determining the focus properties of the electron beam such as the ratio Dw/H, grid bias Vg, and the properties of the extracted electrode arc numerically studied. The calculated results reveal that when Dw/H, Vg, the length of the extracted electrode, and the distance between the grid and the extracted electrode equals 5, q).6 kV, 10 mm, and 8 mm respectively, the electron beam focal spot can be concentrated down to 9 μm in radius and a reasonable focal length about 72.5 mm can be achieved, at the same time, the cathode emission currents can be as high as 30 mA.