The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method discretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.
This paper reviews the dynamics of ocean pipes aspirating fluid and presents a selective review of the research undertaken on it. It focuses on the equations of motion, fluid-solid interaction at the inlet of the free end of the pipe, the stability mechanism of pipes aspirating steady fluid, etc. In particular, some unresolved or partly resolved issues on these important aspects are discussed. Finally, the promising future development in this area is discussed.