Fungi Z4 and Z8, isolated from the heavy metal polluted soil, have strong resistance to Cd and Pb. The strains were identified on the base of their morphology and internal transcribed spacers(ITS) region. Pot experiments were conducted to study the effect of two strains(Z4 and Z8) on the growth and accumulation of Cd and Pb of Guizhou oilseed rape. The results show that strains Z4 and Z8 belong to Mucor circinelloides and Mucor racemosus, respectively. The heights of Guizhou oilseed rape inoculated with strain Z8 increase by 47.90% than the control. The highest fresh mass is found in the plant with Z4/Z8, which is enhanced by160.81%. Pot experiments show that Z4/Z8 inoculums can accelerate accumulation of heavy metals in the plant. The contents of Cd and Pb are increased by 117.60% and 63.48%, respectively. Meanwhile, the heavy metal concentrations in potting soil with the two strains are found to be lower than those of the control, and the concentrations of Cd and Pb are decreased by 60.57% and 27.12%,respectively.
The taxonomy characteriazation and cadmium (Cd) biosorption of the high Cd-resistant fungus M1 were investigated. The internal transcribed spacers (ITS) region and β-tubulin genes of the strain were amplified, sequenced and analyzed by molecular biology technology. The Cd biosorption assay was performed by shaking flask. Fourier transform infrared spectroscopy was used to analyze the mycelium. The similarity of gene sequences and phylogenetic trees show the very close relation between the strain and Paecilomyces lilacinus, and the fungus M1 was identified as P. Lilacinus. The initial pH 6 and Cd concentration about 100 mg/L are optimum. Zn and Mn have a little effect on the Cd biosorption of the strain, while Cu and Pb present obvious effects. FTIR analysis shows that the fungus adsorbs Cd by esters, anhydride, and amide. With the preferable absorption capacity, fungus M1 is considered to have good prospects in bioremediation.