We report on the generation of a high energy and long pulse for pumping optical parametric chirped-pulse amplification (OPCPA) by a high-birefringence photonic crystal fibre (HB-PCF) and a laser-diode-pumped regenerative chirped pulse amplifier. Using the femtosecond pump pulse centred at 815 nm, a 1064 nm soliton pulse is produced in the HB-PCF. After injecting it into an Nd:YAG regenerative amplifier with the glass etalons, a narrow-band amplified pulse with an energy of -4 mJ and a duration of 235 ps is achieved at a repetition rate of 10 Hz, which is suitable for being used as a pump source in the 800 nm OPCPA system.
The influence on the level of amplified spontaneous emission (ASE) contrast resulting from the different seed pulse energies has been experimentally studied in a 10-TW-level femtosecond Ti:sapphire chirped pulse amplification laser. It is found that, with the seed pulse energy increasing, the ASE pedestal is suppressed more efficiently, and the ASE contrast is improved with a saturable tendency. The measurement of -2×10^-8 ASE contrast in the range of more than 50 ps before the main pulse is achieved in the laser.
We design three kinds of photonic crystal fibres (PCF) with two zero-dispersion wavelengths (ZDWs) using the improved full vector index method (FVIM) and finite-difference frequency domain (FDFD} techniques. Based on these designed fibres, the effect of fibre structure, pump power and wavelength on the modulation instability (MI) gain in the anomalous dispersion region close to the second ZDW of the PCFs is comprehensively analysed in this paper. The analytical results show that an optimal MI gain can be obtained when the optimal pump wavelength (1530 nm) is slightly shorter than the second ZDW (1538 nm) and the optimal pump power is 250 W. Importantly, the total MI gain bandwidth has been increased to 260 nm for the first time, so far as we know, for an optimally-designed fibre with ∧ = 1.4 nm and d/∧ = 0.676, and the gain profile became much smoother. The optimal pump wavelength relies on the second ZDW of the PCF whereas the optimal pump power depends on the corporate operation of the optimal fibre structure and optimal pump wavelength, which is important in designing the most appropriate PCF to attain higher broadband and gain amplification.
This paper reports that the tunable self-phase-stabilized infrared laser pulses have been generated from a two- stage optical parametric amplifier. With an 800 nm pump source, the output idler pulses are tunable from 1.3 μm to 2.3 μm, and the maximum output energy of the idler pulses is higher than I mJ at 1.6 μm by using 6 mJ pump laser. A carrier-envelope phase fluctuation of -0.15 rad (rms) for the idler pulses is measured for longer than one hour by using a home build f-to-2f interferometer.