We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro- reactive fuel under high temperature gaseous atmosphere. The fuel studied in this paper contains 73% magnesium powders. An experimental system is designed and experiments are carried out in both argon and water vapor atmo- spheres. It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium, which indicates the molten state of magnesium particles in the burning surface of the fuel. Based on physical considerations and experimental results, a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel. The model enables the evaluation of the burning surface temperature, the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration. The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase, which are in agreement with the observed experimental trends.
Magnesium is of interest for underwater propulsion due to the superior ignition behavior of magnesium particles and the highly exothermic Mg-water reaction.In this work,the ignition and combustion characteristics of an individual millimeter-sized magnesium particle in water vapor were studied.In order to build an atmosphere of water vapor,an experiment system was established and validated by the experiments of magnesium particle in air.The ignition and combustion of a single magnesium particle were accomplished in a combustor filled with water vapor.The surface changes of the particle during the ignition and a steady-state vapor phase combustion were observed.Based on the data obtained,ignition mechanism was analyzed and ignition temperature was determined.The steady-state combustion of the sample was controlled by diffusion in gas phase,and a one-dimensional,spherically symmetric quasi-steady model was adopted to describe the process.The dependence of burning time on the diameter was investigated,and the conclusion that burning time is proportional to the square of the metal sample diameter was drawn.