The green-emitting fluorescent powders of nano Y2O3:Er^3+ were fabricated by the coprecipitation method. The X-ray diffrac- tion pattern shows that as-prepared Y2O3:Er^3+ is the cubic phase crystal with a grain size of about 30 nm. The UV-Vis spec- trum indicates Y^O3:Er^3+ exhibits five ultraviolet visible absorption peaks at 365, 377, 489, 521 and 652 nm respectively. Meanwhile, the fluorescence spectra of Y2O3:Er^3+ display four emission peaks at 522, 537, 550 and 562 nm at the excitation of 365,377 and 521 nm, respectively. The green-emitting fluorescent mechanism of Y2O3:Er^3+ is proposed as well. Additionally, the temperature dependence of fluorescence properties and metal Ag fluorescence enhancement effect are investigated. Results show that increasing the annealing temperature and metal Ag doping both can enhance the fluorescence intensity. The maxi- mum enhancement is 87.5% after Ag is doped.
JI RuoNanYE YanXiHU XiaoYunFAN JunLIU EnZhouZHANG QianZHAO ChaoShuaiYE SiWen
First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. The calculated results show that Y and N codoping leads to lattice distortion, easier separation of photogenerated electron-hole pairs and band gap narrowing. The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping, which enhances visible-light photocatalytic activity.