您的位置: 专家智库 > >

国家自然科学基金(60874105)

作品数:14 被引量:122H指数:8
相关作者:邓勇韩德强蒋雯苏晓燕王栋更多>>
相关机构:上海交通大学西南大学西安交通大学更多>>
发文基金:国家自然科学基金上海市青年科技启明星计划教育部“新世纪优秀人才支持计划”更多>>
相关领域:自动化与计算机技术理学电子电信农业科学更多>>

文献类型

  • 12篇期刊文章
  • 1篇会议论文

领域

  • 10篇自动化与计算...
  • 4篇理学
  • 2篇电子电信
  • 1篇天文地球
  • 1篇电气工程
  • 1篇农业科学

主题

  • 4篇信息融合
  • 3篇证据理论
  • 3篇INFORM...
  • 2篇PHD
  • 2篇UNCERT...
  • 2篇BASED_...
  • 2篇D-S证据
  • 2篇D-S证据理...
  • 2篇GENERA...
  • 2篇RAL
  • 1篇多目标
  • 1篇多目标跟踪
  • 1篇预警
  • 1篇预警系统
  • 1篇食品
  • 1篇食品供应
  • 1篇随机集
  • 1篇粮食安全
  • 1篇幂集
  • 1篇模糊数

机构

  • 6篇上海交通大学
  • 5篇西南大学
  • 2篇西安交通大学
  • 2篇湘潭大学
  • 1篇国防科学技术...
  • 1篇杭州电子科技...
  • 1篇西北工业大学
  • 1篇中国人民解放...
  • 1篇中华人民共和...
  • 1篇中国人民解放...
  • 1篇中国农业信息...

作者

  • 6篇邓勇
  • 2篇韩德强
  • 2篇蒋雯
  • 2篇苏晓燕
  • 1篇关欣
  • 1篇张蕙杰
  • 1篇文成林
  • 1篇李齐
  • 1篇徐晓滨
  • 1篇胡丽芳
  • 1篇何友
  • 1篇章雅娟
  • 1篇吴英
  • 1篇王芝
  • 1篇王栋
  • 1篇李志强

传媒

  • 4篇Journa...
  • 2篇控制理论与应...
  • 2篇西安交通大学...
  • 2篇Chines...
  • 1篇振动.测试与...
  • 1篇农业工程学报

年份

  • 1篇2012
  • 7篇2011
  • 1篇2010
  • 4篇2009
14 条 记 录,以下是 1-10
排序方式:
基于多因素信息融合的中国粮食安全预警系统被引量:19
2011年
中国是世界上粮食消耗最大的国家,随着社会经济的发展,中国的粮食安全备受全球瞩目。粮食安全的评估涉及众多因素,既有定量数据,又有定性信息。因此,为了全面地对中国的粮食安全进行预警,该文提出了一种基于信息融合的多因素粮食安全评估方法。新方法将各个信息源的定量定性信息转换为基本概率指派函数,利用层次分析方法(Analytic Hierarchy Process)确定各个属性的权重,基于Dempster组合规则实现了多因素的融合。依据1995-2007年的统计年鉴数据,对该文方法的有效性进行了验证。结果表明:该文所提出的信息融合方法能够正确客观地反映出粮食安全警度。
苏晓燕张蕙杰李志强邓勇
关键词:信息融合食品供应粮食安全预警系统DS证据理论
广义幂集空间中证据冲突的原因分析被引量:13
2011年
经典证据理论不能有效处理高度冲突的证据,极大制约了证据理论的应用.早期的研究主要集中在修改Dempster组合规则或修改数据模型.Liu的研究又为这个方向提出了一个新的问题:如何有效表示证据之间的冲突?但是还存在问题:如何有效地判断冲突的成因?针对经典证据理论中的冲突系数无法合理度量证据之间的冲突程度,提出新的证据冲突系数表示模型,在冲突证据原因流程分析中总结出冲突的成因.最后用数值算例说明了本文所提出方法的有效性.
胡丽芳关欣邓勇何友
关键词:DEMPSTER组合规则信息融合不确定性
广义证据理论中的基本概率指派生成方法被引量:16
2011年
鉴于基本概率指派生成对证据理论的研究具有重要的意义,文中针对辨识框架不完整情况提出了一种强约束广义基本概率指派赋值方法,新方法可以生成空集不为零的广义基本概率指派赋值,该数值的大小反映了系统是开放世界的可能性.针对辨识框架完整情况提出了一种弱约束基本概率指派赋值方法,该方法在样本与表示模型之间不相交时,也可以给出样本与模型相似性度量的数值,根据所提出的策略生成弱约束的基本概率指派.算例表明了所提出方法的有效性.
邓勇韩德强
关键词:目标识别模糊数
Measuring Conflict Functions in Generalized Power Space被引量:11
2011年
One of the most important open issues is that the classical conflict coefficient in D-S evidence theory (DST) cannot correctly determine the conflict degree between two pieces of evidence. This drawback greatly limits the use of DST in real application systems. Early researches mainly focused on the improvement of Dempster’s rule of combination (DRC). However, the current research shows it is very important to define new conflict coefficients to determine the conflict degree between two or more pieces of evidence. The evidential sources of information are considered in this work and the definition of a conflict measure function (CMF) is proposed for selecting some useful CMFs in the next fusion work when sources are available at each instant. Firstly, the definition and theorems of CMF are put forward. Secondly, some typical CMFs are extended and then new CMFs are put forward. Finally, experiments illustrate that the CMF based on Jousselme and its similar ones are the best suited ones.
HU LifangGUAN XinDENG YongHAN DeqiangHE You
关键词:UNCERTAINTY
基于改进D-S组合规则的故障模式分类被引量:10
2011年
提出了一种改进的D-S证据组合规则,引入了基于证据之间距离测度的证据一致性指标动态描述证据的可信度。结合证据有效性和证据重要性,得到了一个综合的动态可信度和静态可信度的系数。基于该系数,提出了一种改进的D-S组合规则,该规则能够有效处理冲突较大的证据融合问题。最后用一个故障诊断的例子说明了该规则的有效性,并与其他方法作了比较。
苏晓燕邓勇吴英蒋雯
关键词:D-S证据理论信息融合故障诊断
A New Probabilistic Transformation in Generalized Power Space被引量:4
2011年
The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.
HU LifangHE YouGUAN XinDENG YongHAN Deqiang
关键词:UNCERTAINTY
RANDOM SETS: A UNIFIED FRAMEWORK FOR MULTISOURCE INFORMATION FUSION被引量:3
2009年
The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and so on. However,the information is modeled and fused traditionally in particular,name some of the known theories: evidential,fuzzy sets,possibilistic,rough sets or conditional events,etc. For several years,researchers have explored the unification of theories enabling the fusion of multisource information and have finally considered random set theory as a powerful mathematical tool. This paper attempts to overall review the close relationships between random set theory and other theories,and introduce recent research results which present how different types of information can be dealt with in this unified framework. Finally,some possible future directions are discussed.
Xu Xiaobin Wen Chenglin
A NEW EVIDENCE UPDATING RULE BASED ON CONDITIONAL EVENT
2009年
Updating or conditioning a body of evidence modeled within the DS framework plays an important role in most of Artificial Intelligence (AI) applications. Rule is one of the most important methods to represent knowledge in AI. The appearance of uncertain reasoning urges us to measure the belief of rule. Now,most of uncertain reasoning models represent the belief of rule by conditional probability. However,it has many limitations when standard conditional probability is used to measure the belief of expert system rule. In this paper,AI rule is modelled by conditional event and the belief of rule is measured by conditional event probability,then we use random conditional event to construct a new evidence updating method. It can overcome the drawback of the existed methods that the forms of focal sets influence updating result. Some examples are given to illustrate the effectiveness of the proposed method.
Wen Chenglin Wang Yingchang Xu Xiaobin
THE PROBABILITY HYPOTHESIS DENSITY FILTER WITH EVIDENCE FUSION
2009年
The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.
Liu Weifeng Xu Xiaobin
广义证据理论的基本框架被引量:20
2010年
针对经典证据理论不能有效处理辨识框架不完整情况下的信息融合问题,提出了一种广义证据理论.新理论定义了广义基本概率指派函数,对空集的广义基本概率指派大小表明了支持辨识框架不完整命题的程度,提出了能够融合广义基本概率指派的广义组合规则,该组合规则是一个与空集基本概率指派相关的函数,同时满足交换律和结合律.广义证据理论是经典证据理论的推广,当空集赋值为零时,广义证据理论退化为经典的证据理论.用算例表明了所提出的广义证据理论的有效性.
邓勇蒋雯韩德强
关键词:信息融合
共2页<12>
聚类工具0