Renal tubulointerstitial fibrosis is the common ending of progressive renal disease. It is worth developing new ways to stop the progress of renal fibrosis. Peroxisome proliferator-activated receptor-γ(PPARγ) agonists have been studied to treat diabetic nephropathy, cisplatin-induced acute renal injury, ischemia reperfusion injury and adriamycin nephropathy. In this study, unilateral ureteral obstruction(UUO) was used to establish a different renal fibrosis model. PPARγ agonist pioglitazone was administrated by oral gavage and saline was used as control. At 7th and 14 th day after the operation, mice were sacrificed for fibrosis test and T lymphocytes subsets test. Unexpectedly, through MASSON staining, immunohistochemistry for α-SMA, and Western blotting for α-SMA and PDGFR-β, we found that pioglitazone failed to attenuate renal fibrosis in UUO mice. However, flow cytometry showed that pioglitazone down-regulated Th1 cells, and up-regulated Th2 cells, Th17 cells and Treg cells. But the Th17/Treg ratio had no significant change by pioglitazone. Real-time PCR results showed that TGF-β and MCP-1 had no significant changes, at the same time, CD4+ T cells associated cytokines were partially regulated by pioglitazone pretreatment. Taken together, pioglitazone failed to suppress renal fibrosis progression caused by UUO.
Erbin, a member of Leucine-rich repeat and PDZ-containing protein family, was found to inhibit TGF-β-induced epithelial-mesenchymal transition (EMT) in our previous study. However, the mechanism of Erbin in regulating EMT is unclear. Semaphorin protein Sema4C, with PDZ binding site at C-terminal has been recognized as a positive regulator of EMT. Here, we aimed to examine the inter- action between Erbin and Sema4C. HK2 cells were treated with TGF-β1, or transfected with Erbin and (or) Sema4C. Interaction of Erbin and Sema4C was identified by immunoprecipitation. RT-PCR was used to detect the expression of Erbin and Sema4C at mRNA level after transfection. The expression levels of Erbin, Sema4C, and markers of EMT were measured by using Western blotting or ELISA. Af- ter HK2 cells were stimulated with 10 ng/mL TGF-β1 for 72 h, the protein expression levels of Erbin and Sema4C were both up-regulated, and immunoprecipitation results showed Erbin interacted with Sema4C in HK2 cells both at endogenous and exogenous levels. Furthermore, overexpression of Sema4C suppressed E-cadherin, induced vimentin and promoted fibronectin secretion, indicating Sema4C promotes the process of EMT. However, HK2 cells overexpressing Erbin were resistant to Sema4C-induced EMT. In contrast, Erbin specific siRNA promoted EMT induced by Sema4C. Taken together, these results suggest that Erbin can interact with Sema4C, and co-expression of Erbin blocks the process of Sema4C-induced EMT.