您的位置: 专家智库 > >

国家自然科学基金(11101374)

作品数:2 被引量:4H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学

主题

  • 1篇R^N
  • 1篇SEMI
  • 1篇CLASSI...
  • 1篇LI
  • 1篇LINEAR
  • 1篇EXISTE...
  • 1篇QUASIL...
  • 1篇EXPONE...

传媒

  • 1篇Acta M...
  • 1篇Scienc...

年份

  • 1篇2016
  • 1篇2011
2 条 记 录,以下是 1-2
排序方式:
Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms被引量:4
2011年
In this paper we consider the first order discrete Hamiltonian systems {x1(n+1)-x1(n)=Hx2(n,x(n)),x2(n)-x2(n-1)=Hx1(n,x(n)),where x(n) = (x2(n)x1(n))∑ R^2N, H(n,z) = 1/2S(n)z. z + R(n,z) is periodic in n and superlinear as {z} →4 ∞. We prove the existence and infinitely many (geometrically distinct) homoclonic orbits of the system by critical point theorems for strongly indefinite functionals.
CHEN WenXiongYANG MinBoDING YanHeng
Existence of Semiclassical States for a Quasilinear Schr?dinger Equation on R^N with Exponential Critical Growth
2016年
We study a quasilinear Schrodinger equation {-εN△Nu+V(x)|u|N-2= Q(x)f(u) in R^N,0〈u∈W1,N(RN),u(x)^|x|→∞0,where V, Q are two continuous real functions on R^N and c 〉 0 is a real parameter. Assume that the nonlinearity f is of exponential critical growth in the sense of Trudinger-Moser inequality, we are able to establish the existence and concentration of the semiclassical solutions by variational methods. Keywords Exponential critical growth, semiclassical solutions, variational methods
Shao Jun LICarlos A. SANTOSMin Bo YANG
共1页<1>
聚类工具0