Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.
By analysing the CTD data in the southernregion of the South China Sea gathered during six cruisesbetween 1989 and 1999, a barrier layer with seasonalvariation just like what exists in the equatorial oceans isfound in this region. It is the first discovery in such amarginal sea yet. It is strong in autumn and a little weak in summer and winter. The thicker the barrier layer, the higher the average temperature of the upper mixed layer. The region with the thicker barrier layer overlaps the region with thehigher average temperature of the upper mixed layer, andaccords with the thicker region of the warm pool in the South China Sea got from the Levitus data. The barrier layer in the southern region of the South China Sea has significantinfluence on the heat storage of the upper ocean there.
The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parameters of the internal tides are vertical wavenumber -1.6×10^-3 m^-1, horizontal wavenumber (wavelength) 3.3×10^-2 km^-1 (210 km), vertical propagation speed -3.8 cm/s and horizontal propagation speed 2.0 m/s. The waveforms propagate downwards slantingly, that is, the wave energy transfers upwards slantingly. Depth-distribution of the'rotary spectral levels is a saddle-shape. The depths of the trough and the deeper peaks are almost coincident with those of the south boundaries of the South Equatorial Current and the Equatorial Undercurrent, respectively. The mean orientation of the rotary spectral ellipse changes with depth: 30° from north to east at 40 m, and changes into 14° from east to south at 324 m, and generally, it points to northeastward, which indicates "that waves come from the southwest.