您的位置: 专家智库 > >

国家自然科学基金(60805012)

作品数:3 被引量:1H指数:1
相关作者:陈旭阳齐飞石光明史思琦更多>>
相关机构:西安电子科技大学更多>>
发文基金:国家自然科学基金国家教育部博士点基金更多>>
相关领域:自动化与计算机技术电子电信更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 1篇英文
  • 1篇小波
  • 1篇小波变换
  • 1篇离散小波变换
  • 1篇级联
  • 1篇仿射
  • 1篇仿射变换
  • 1篇NLM
  • 1篇GAUSSI...
  • 1篇波变换

机构

  • 1篇西安电子科技...

作者

  • 1篇史思琦
  • 1篇石光明
  • 1篇齐飞
  • 1篇陈旭阳

传媒

  • 1篇红外与激光工...
  • 1篇Journa...

年份

  • 1篇2012
  • 1篇2011
3 条 记 录,以下是 1-2
排序方式:
采用级联仿射不变函数的快速平面形状识别(英文)被引量:1
2012年
现有的基于小波变换的形状识别算法具有很高的计算复杂度,难以满足许多实时应用的要求。文中提出了基于级联仿射不变函数的快速形状识别算法,用于识别仿射变换下的含噪目标。利用目标轮廓的小波变换可以得到一组仿射不变函数,并进一步构造出级联仿射不变函数。为了保证级联仿射不变函数的平移不变性,预先对轮廓的起始点进行了有效配准。从而通过级联仿射不变函数的内积,方便地度量出目标形状的相似度。与现有基于小波的识别算法相比,所提出的算法具有很低的计算复杂度,其所需CPU时间仅为其它算法的1/7。实验结果验证了该算法的有效性和起始点配准的准确性。
史思琦石光明陈旭阳齐飞
关键词:仿射变换离散小波变换
GAUSSIAN PRINCIPLE COMPONENTS FOR NONLOCAL MEANS IMAGE DENOISING
2011年
NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.
Li XiangpingWang XiaotianShi Guangming
共1页<1>
聚类工具0