The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.
Using rainfall data from the Global Precipita- tion Climatology Project (GPCP), NOAA extended reconstruction sea surface temperature (ERSST), and NCEP/NCAR reanalysis, this study investigates the interannual variation of summer rainfall southwest of the Indian Peninsula and the northeastern Bay of Bengal associated with ENSO. The composite study indicates a decreased summer rainfall southwest of the Indian Penin- sula and an increase in the northeastern Bay of Bengal during the developing phase, but vice versa during the decay phase of E1 Nifio. Further regression analysis dem- onstrates that abnormal rainfall in the above two regions is controlled by different mechanisms. Southwest of the Indian Peninsula, the precipitation anomaly is related to local convection and water vapor flux in the decay phase of E1 Nifio. The anomalous cyclone circulation at the lower troposphere helps strengthen rainfall. In the northeastern Bay of Bengal, the anomalous rainfall depends on the strength of the Indian southwest summer monsoon (ISSM). A strong/weak ISSM in the developing/decay phase of E1 Nifio can bring more/less water vapor to strengthen/weaken the local summer precipitation.
YANG Ya-LiDU YanWU Yan-LingHUANG GangZHANG Yong-Sheng
This study investigates the surface circulation in the Indian Ocean using Argos float data over the period 1979-2011.The Argos observations manifest some new phenomena.The climatological annual mean circulation shows that the surface current becomes much stronger after turning around in shore in the western Indian Ocean.In the tropical Indian Ocean,the Great Whirl(GW) to the east of Somalia develops quickly in spring(April-May) as the monsoon reverses to move northward,becoming strongest in summer(June-September) and disappearing in autumn(October-November).The west end of the Agulhas retroflection can reach 18°E,and it exhibits a seasonal variation.At approximately 90°E,the Agulhas Return Current combines with the eastward South Atlantic Current and finally joins the Antarctic Circumpolar Current.
ZHENG Shao-JunZHANG Yu-HongZHUANG WeiLI Jia-XunDU Yan