The effect of mineral particle size, pulp potential and category of oxidant on pyrite leaching was studied. The results show that a smaller mineral particle size leads to a higher leaching rate of pyrite, and the optimum result with pyrite leaching rate of 2.92% is obtained when mineral particle size is less than 0.037 mm. The pulp potential reflects the leaching process. The increase of pulp potential can improve pyrite leaching. The leaching rate and velocity of pyrite can be enhanced rapidly by adding strong oxidant. The kind and the method of adding oxidant have important effect on the pyrite leaching. Appropriate concentration of Fe3+ can enhance pyrite leaching but the precipitation generated by high concentration of ferric ion covers the surface of pyrites and prevents the leaching process. The leaching rate increases with the constant addition of H2O2.
Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and the leaching kinetics of nickel was analyzed. The experimental results indicate that the effects of particle size and sulfuric acid concentration on the nickel extraction are remarkable; the effect of reaction temperature is mild; while the effect of stirring speed in the range of 400-1 200 r/min is negligible. Decreasing particle size or increasing sulfuric acid concentration and reaction temperature, the nickel extraction efficiency is improved. 93.5% of nickel in residue is extracted under suitable leaching conditions, including particle size (0.074-0.100) mm, sulfuric acid concentration 30% (mass fraction), temperature 80 ~C, reaction time 180 min, mass ratio of liquid to solid 10 and stirring speed 800 r/min. The leaching kinetics analyses shows that the reaction rate of leaching process is controlled by diffusion through the product layer, and the calculated activation energy of 15.8 kJ/mol is characteristic for a diffusion controlled process.