For more than a century, ecologists have concentrated on competition as a crucial process for community organization. However, more recent experimental investigations have uncovered the striking Influence of positive Interactions on the organization of plant communities. Complex combinations of competition and positive interactions operating simultaneously among plant species seem to be widespread In nature. In the present paper, we reviewed the mechanism and ecological importance of positive Interactions In plant communities, emphasizing the certainties and uncertainties that have made It an attractive area of research. Positive Interactions, or facilitation, occur when one species enhances the survival, growth, or richness of another. The Importance of facilitation in plant organization increases with ablotlc stress and the relative Importance of competition decreases. Only by combining plant interactions and the many fields of biology can we fully understand how and when the positive Interactions occur.
Monocultures of spring wheat (Triticum aestivum L.) were grown at overcrowded densities (10 000 and 3 000 plants per m^2) under well-watered and water-stressed conditions to investigate the effects of water deficits on self-thinning. The results showed that density reduction in water-stressed populations was delayed compared with that In well-watered populations. Populations grown In well-watered conditions conformed to the -3/2- power law. Compared with the well-watered condition, there was no significant decrease of the self-thinning line under water-stressed conditions In this experiment, although the rate of average shoot blomass accumulatlon decreased. This result Implied that the exponent of the -3/2-power equation Is not as sensitive as the rate of average shoot blomass accumulation to water stress. Further analysis indicated that, In each density treatment, the lines of the height versus shoot blomass relationships did not differ significantly between the two water conditions. However, the Intercepts of the height versus shoot blomass relationships were greater In the higher-density populations (10 000/m^2) than those In the lower-density populations (3 000/m^2). These results showed that water deficit did not change plant geometry In this experiment. That Is to say, shoot competition for light remains constant at a given blomass, although root competition for water becomes more serious In water deficit conditions. Based on these results and previous reports we propose that, to affect the thinning line slope, changes In symmetric competition are not as efficient as changes In asymmetric competition.
Many studies have focused on soil nutrient heterogeneity and islands of fertility in arid ecosystems. However, few have been conducted on an oasis-desert transitional zone where there is a vegetation pattern changing from shrubs to annual herbs. The goal of the present study was to understand vegetation and soil nutrient heterogenity along an oasis-desert transitional zone in northwestern China. Three replicated sampling belts were selected at 200 m intervals along the transitional zone. Twenty-one quadrats (10 x 10m) at 50m intervals were located along each sampling belt. The vegetation cover was estimated through the quadrats, where both the soil under the canopy and the open soil were sampled simultaneously. The dominated shrub was Haloxylon ammodendron in the areas close to the oasis and Nitraria tangutorum dominated the areas close to the desert. In general, along the transitional zone the vegetation cover decreased within 660 m, increased above 660 m and decreased again above 1 020 m (close to the desert). The soil nutrients (organic matter, total N, NO3^- and NH4^+) showed significant differences along the zone. The soil nutrients except the soil NH4^+ under the canopy were higher than those in open soil, confirming "islands of fertility" or nutrient enrichment. Only a slight downward trend of the level of "islands of fertility" for soil organic matter appeared in the area within 900 m. Soil organic matter both under canopy and in interspace showed a positive correlation with the total vegetation cover, however, there was no significant correlation between the other soil nutrients and the total vegetation cover. We also analyzed the relationship between the shrubs and annuals and the soil nutrients along the zone. Similarly, there was no significant correlation between them, except soil organic matter with the annuals. The results implied that annual plants played an important role in soil nutrient enrichment in arid ecosystem.
Bao-Ming ChenGen-Xuan WangDong-Liang ChengJian-Min DengShao-Lin PengFu-Bo An
In the present study, we focused on whether Intracellular free Ca^2+ ([Ca^2+],) regulates the formation of mltochondrlal permeability transition pore (MPTP) In H2O2-induced apoptosis In tobacco protoplasts. It was shown that the decrease In mltochondrlal membrane potential (△ψm) preceded the appearance of H2O2-Induced apoptosls; pretreatment with the specific MPTP Inhibitor cyclosporine A, which also Inhibits Ca^2+ cycling by the mitochondria, effectively retarded apoptosls and the decrease In △ψm. Apoptosls and decreased △ψm were exacerbated by CaCl2, whereas the plasma membrane voltage-dependent Ca^2+ channel blocker lanthanum chloride (LaCl3) attentuated these responses. Chelation of extracellular Ca^2+ with EGTA almost totally Inhibited apoptosls and the decrease In △ψmInduced by H2O2. The time-course of changes In [Ca^2+]l In apoptosls was detected using the Ca^2+ probe Fiuo-3 AM. These studies showed that [Ca^2+]1 was Increased at the very early stage of H2O2-Induced apoptosls. The EGTA evidently Inhibited the Increase In [Ca^2+]1 Induced by H=O=, whereas It was only partially Inhibited by LaCl3. The results suggest that H2O2 may elevate cytoplasmic free Ca^2+ concentrations In tobacco protoplasts, which mainly results from the entry of extracellular Ca^2+, to regulate mltochondrlal permeability transition. The signaling pathway of [Ca^2+]1-medlated mltochondrlal permeability transition was associated with H2O2-Induced apoptosis In tobacco protoplaete.