Fluorescence decrease ratio (F0/F) was applied to determination of artemisinin (qinghaosu, QHS) based on the catalytic effect of tyrosinase using tetraethyldiaminoxanthenyl chloride (pyronine B, PB) as monitor. A catalyst used commonly in the decomposition of QHS, tyrosinase, exhibited higher binding activity than hemin, which was expressed as Michaelis-Menten parameters, km, Vmax, and kcat respectively. Interaction of QHS with tyrosinase was inhibited in the presence of deactivating agents at high temperature whereas enhanced by ethanol. Under optimal conditions, a concentration of 1.4×10^-7-8.4×10^-7 mol·L^-1of QHS could be determined on the basis of fluorescence decrease ratio of PB, with a detection limit 3tr of 2.6×10^-9 mol·L^-1. The proposed method was applied to detection of the concentration of QHS in the media of plasma and urine.
The application of a new fluorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.
Enzyme-catalytic fluorescence determination of artemisinin (qinghaosu, QHS) was developed using pyronine B (PB) as substrate of horseradish peroxidase (HRP). The interaction between HRP and QHS was an enzyme-substrate model. The catalytic characteristic of HRP in the oxidation reaction, in which the fluorescence of PB was decreased in the presence of QHS, was studied. The steady-state catalytic rate depended upon enzyme and substrate concentrations, and the Michaelis-Menten parameters Km, Vmax and Kcat were 8.4×10?5 mol · L?1, 7.4×10?6 mol · L?1 s?1 and 50.23 s?1. The catalytic activity of enzyme was inhibited in the presence of deactivated agents and at high temperature, respectively. Under optimum conditions, linear relationship between fluo-rescence intensity change (F0?F) of pyronine B and concen-tration of QHS was in the range of 1.41×10?7―1.27×10?6 mol · L?1. The detection limit (3σ) was determined to be 2.7×10?8 mol · L?1. The proposed method was applied to the concentration determination of QHS in the media of plasma or urine samples.