OBJECTIVE: To investigate the optimal dosage ratio of chlorogenic acid and gardenia glycosides in treating the rates with fatty liver disease induced by high-fat feed.METHODS: A rat model of non-alcoholic fatty liver disease(NAFLD) was established by using a high-fat diet. According to mathematical model "uniform design", varying doses of chlorogenic acid and gardenia glycosides have been combined to form 6 medications for the treatment of NAFLD.Samples were then taken to observe pathological changes of the liver tissue(HE staining); changes in the fat metabolism pathway e.g. triglyceride(TG)and free fatty acid(FFA) content; alterations in liver function, i.e. serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST) activity; and differences in Malondialdehyde(MDA) and superoxide dismutase(SOD) content in the liver tissue. Multiple regression analysis was conducted to test the optimal dosage ratio of chlorogenic acid and gardenia glycosides.RESULTS: Fatty degeneration and vacuole-like changes of different degrees occurred in hepatic cells of the model group. Markers for fat metabolism, serum ALT and AST activities, and expression of MDA in liver tissue significantly increased, while SOD decreased. Combination of 90 mg chlorogenic acid and 90 mg Gardenia glycosides was the optimal dosage ratio of chlorogenic acid and gardenia glycosides in the treatment of rats with fatty liver induced by high-fat diet.CONCLUSION: Chlorogenic acid of 90 mg plus gardenia glycosides of 90 mg was the best combination in the treatment of fatty liver disease in rats induced by high-fat feed.
OBJECTIVE: To investigate the effects on non-alcoholic fatty liver disease (NAFLD) in rats of the decoction of Yiqihuoxue formula and the solution prepared with the extracts from the individual herbal medicines of the formula. METHODS: The rat models of NAFLD were established with high-fat diet (HFD) for 10 weeks. Thirty-two rats were randomly divided into 4 groups: the control group, the model group, the decoction group and the solution group, 8 for each group. From the 6th week, drinking water, the decoction and the solution were intragastrically administrated accordingly to the rats for 5 weeks. The pathological changes of the liver tissues were observed with Hematoxylin and eosin staining, triglyceride levels in liver tissues measured, serum alanine aminotransferase (ALT) activity measured, and serum gastrin and motilin tested. RESULTS: Fatty degeneration and vacuole-like changes to various degrees occurred in hepaticcells of the model group. Indicators for fat metabolism, serum ALT activity and hepatic triglyceride level significantly increased, while serum gastrin and motilin levels significantly decreased. Serum ALT activity and the fatty deposition in hepatocytes were significantly reduced. In the meantime, the expressions of gastrin and motilin in the serum rose significantly in the treatment groups. CONCLUSION: Both the decoction and the extracts-mixed solution had effect on NAFLD of protecting the liver function and reducing the fatty deposition in liver, which might be achieved by regulating the expression of gastrin and motilin.